Detection of Typhoidal and Paratyphoidal Salmonella in Blood by Real-time Polymerase Chain Reaction.
نویسندگان
چکیده
BACKGROUND The gold standard for diagnosis of enteric fever caused by Salmonella Typhi or Salmonella Paratyphi A or B is bone marrow culture. However, because bone marrow aspiration is highly invasive, many hospitals and large health centers perform blood culture instead. As blood culture has several limitations, there is a need for novel typhoid diagnostics with improved sensitivity and more rapid time to detection. METHODS We developed a clyA-based real-time polymerase chain reaction (qPCR) method to detect Salmonella Typhi and Salmonella Paratyphi A simultaneously in blood. The sensitivity and specificity of this probeset was first evaluated in vitro in the laboratory and then in a typhoid-endemic population, in Karachi, Pakistan, and in healthy US volunteers. RESULTS We optimized a DNA extraction and real-time PCR-based method that could reliably detect 1 colony-forming unit/mL of Salmonella Typhi. The probe set was able to detect clinical Salmonella Typhi and Salmonella Paratyphi A strains and also diarrheagenic Escherichia coli, but not invasive E. coli or other invasive bacteria. In the field, the clyA qPCR diagnostic was 40% as sensitive as blood culture. However, when qPCR-positive specimens were considered to be true positives, blood culture only exhibited 28.57% sensitivity. Specificity was ≥90% for all comparisons and in the healthy US volunteers. qPCR was significantly faster than blood culture in terms of detection of typhoid and paratyphoid. CONCLUSIONS Based on lessons learned, we recommend that future field trials of this and other novel diagnostics that detect typhoidal and nontyphoidal Salmonella employ multiple methodologies to define a "positive" sample.
منابع مشابه
Development of New Modified Simple Polymerase Chain Reaction and Real-time Polymerase Chain Reaction for the Identification of Iranian Brucella abortus Strains
Brucellosis is primarily a worldwide zoonotic disease caused by Brucella species. The genus Brucella contains highly infectious species that are classified as biological threat agents. In this regard, the identification of Brucella can be a time-consuming and labor-intensive process posing a real risk of laboratory-acquired infection to the laboratory staff. This stud...
متن کاملDetection of Nocardia Asteroides Complex in Clinical Isolates by Real-Time Polymerase Chain Reaction
Background and Aims: Nocardia asteroides complex is the most common cause of infectious diseases due to nocardiosis. Interspecies differentiation of Nocardia genera is essential for prognosis and timely proper treatment, as well as for epidemiological studies. Since each genus has its own antibiotic resistance, precise careful diagnosis is of prime importance. As compared to biochemical and phe...
متن کاملFetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran
Objective Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxi...
متن کاملDevelopment and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species ...
متن کاملDetection Of Toxoplasma Gondii and Human Cytomegalovirus DNA in Blood from Transplant Recipients Using Multiplex Nested Polymerase Chain Reaction
Evidences from many studies suggested a polymerase chain reaction (PCR) as a valuable method for diagnosing infectious disease in the transplant recipients. We used this method for detection of Toxoplasma, gondii and human cytomegalovirus in blood specimens from patients after bone marrow or kidney transplantation. DNA of both infectious agents were detected using two separate sets of nested pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
دوره 61 Suppl 4 شماره
صفحات -
تاریخ انتشار 2015